NIOSH Oil & Gas Extraction Sector Program: Overview of Safety and Health and Exposure Assessment Research

John Snawder, PhD DABT NIOSH Cincinnati, OH

NIOSH OIL AND GAS SAFETY AND HEALTH RESERCH PROGRAM PERSONNEL

- Barbara Alexander
- Marissa Alexander-Scott
- Michael Breitenstein
- David Caruso
- Eric Esswein
- Ryan Hill

- Belinda Johnson
- Max Kiefer
- Bradley King
- Krystal Mason
- Kyla Retzer
- Sophia Ridl

Disclaimer

The findings and conclusions in this presentation are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

Mention of company trade names or products does not constitute endorsement by the Centers for Disease Control and Prevention.

What is NIOSH?

- NIOSH is the National Institute for Occupational Safety and Health
- U.S. federal agency that conducts research and makes recommendations in order to prevent worker injury and illness
- Main objective: protect the safety and health of the nation's 155 million workers
 - Estimated cost of work-related fatalities, injuries, and illness in 2007 was \$250 billion in medical costs and productivity losses

Occupational Safety & Health Act 1970

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

What drives NIOSH research?

National Occupational Research Agenda

- a partnership program to stimulate innovative research and improved workplace practices since 1996
- diverse parties collaborate to identify the most critical issues in workplace safety and health
 partners then work together to develop goals and objectives for addressing these needs

Priorities influenced by:

- The number of workers at risk for a particular injury or illness
- The seriousness of a hazard or problem
- The chance that new data or approaches can make a difference

Sectors

NORA research goals are organized into 10 programs representing different industry sectors:

- Agriculture, Forestry and Fishing
- Construction
- Healthcare and Social Assistance
- Manufacturing
- Mining
- Public Safety
- Services
- Transportation, Warehousing and Utilities
- Wholesale and Retail Trade
- Oil and Gas Extraction

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

The Beginning of NIOSH Program: 2005-2007

- In August 2005, U.S. Department of Labor's Bureau of Labor Statistics (BLS) asked CDC to investigate a 15% increase in fatalities among oil and gas extraction workers
- 85 fatalities in 2003 and 98 fatalities in 2004
- Dr. John Howard, Director of NIOSH, appointed two scientists from the Alaskan office to find out why this was occurring

Establishment of the NORA Oil and Gas Council

Early Partners

NIOSH identified and invited safety and health professionals from industry, government, and academia to join the National Occupational Research Agenda (NORA) Oil and Gas Extraction Sector Council

Doyon Drilling, Inc.

DOYON DRILLING, INC.

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Pre-Council Meeting

- Held in February 2008
- Goals: to outline subsector issues and working groups, identify key stakeholders for possible participation, plan future meetings
- Participants began to develop a list of research issues that would be considered by the council in the development of the Oil and Gas Extraction Subsector Council Strategic Plan:

NORA O&G Sector Meetings

DSHA[®]

HELMERICH & PAYNE-TULSA, OKLA

IADC

- First full meeting occurred in July 2008
- Primary objective was to formulate an outline of possible safety and health research topics
- Group continued to grow, adding new members over the years
- Published a strategic plan outlining research priorities for both NIOSH and the O&G stakeholders in 2011

EX onMobil

ISN

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

NORA National Oil and Gas Extraction Agenda

National Oil and Gas Extraction Agenda – October 2011
NATIONAL OCCUPATIONAL RESEARCH AGENDA (NORA)
NATIONAL OIL AND GAS EXTRACTION AGENDA
For Occupational Safety and Health Research and Practice in the U.S. Oil and Gas Extraction Industry
October 18, 2011
Developed by the NORA Oil and Gas Extraction Council

Strategic Goals

By 2020:

- Reduce the occupational fatality rate in the oil and gas extraction industry by 50%
- Reduce the occupational motor vehicle fatality rate in the oil and gas industry by 50%
- Reduce the fatality rate due to contract injuries in the oil and gas extraction industry by 50%
- Reduce the rate of non-fatal occupational injuries in the oil and gas extraction industry by 50%
- Identify hazards, characterize risk, and prevent chemical exposures which could lead to occupational illness in workers in the oil and gas extraction industry

NIOSH OIL & GAS EXTRACTION SAFETY & HEALTH PROGRAM

NORA

Norkplace

Department of Health and Human pervices Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

The Global Oil & Gas Value Chain

Major Oil and Gas Production Areas

Upstream has the Highest Fatality Rate in the U.S. Oil & Gas Industry, 2014

Downstream

60% of total workers Fatality Rate = 4.2

Upstream Oil and Gas Exploration & Production

- 1. Exploration, leasing, etc.
- 2. Road & site preparation
- 3. Drilling, casing, cementing wellbore to TD
- 4. Completions (hydraulic fracturing)
- 5. Well testing, connection to grid
- 6. Servicing, re-stimulation, other work

Duration of Activities

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

The U.S. Oil and Gas Extraction Industry

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Industry Growth

The oil and gas workforce doubled and the number of drilling rigs increased 71% from 2003-2013.

Number and Rate of Fatal Work Injuries

U.S. Oil & Gas Extraction Industry, 2003-2014

Note: Fatality counts from BLS Census of Fatal Occupational Injuries. Worker Estimates Centers for Disease Control and Prevention National Institute for Occupational Safety and Health workers per year. Includes NAICS 211, 213112. *Data for 2014 are preliminary.

Number and Rate of Fatal Work Injuries

U.S. Oil & Gas Extraction Industry, 2003-2013

Department of Health and Human Services from BLS Quarterly Census of Employment and Wages (2013). Rate per 100,000 Centers for Disease Control and Prevention from BLS Quarterly Census of Employment and Wages (2013). Rate per 100,000 National Institute for Occupational Safety and Healthworkers per year. Includes NAICS 211, 213111, 213112. *Data for 2013 are preliminary.

Trends in Fatality Rate by Company Type, 2003-2013

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

NIOSH

Most Frequent Fatal Events U.S. Oil & Gas Extraction Industry, 2003-2014

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

NIOSH

Non-fatal Injuries in Exploration and Production

- Most segments of oil and gas extraction report a lower nonfatal injury rate than the average for all private industry
- In 2010 the estimated rate of nonfatal work-related injuries in oil and gas extraction (NAICS 211) was:
 - 1.2 per 100 full-time workers over all
 - 1.9 for workers in support activities for oil and gas extraction (NAICS 213112)
 - 3.3 for drilling oil and gas wells (NAICS 213111)
- The annual rate for all private industries during the same year was 3.5 nonfatal injuries per 100 full-time workers

Different risks for different basins?

Is distraction or fatigue a factor?

The details needed to answer these questions are not in available data sources (BLS CFOI)

What are the most common ignition sources?

What are the most dangerous operations?

Department of Health a Centers for Disease Co National Institute for (vices tion ty and Health

Fatalities in Oil and Gas (FOG) database

New internal database collecting detailed information about oil and gas worker fatalities in the U.S.

Fatalities in Oil and Gas (FOG) database

50 Variables per Incident

- ✓ Operation
- ✓ Basin
- ✓ Fatigue Related
- ✓ Weather Related
- ✓ Offshore Incidents

FOG collects the details that are missing from other data sources

Variables per Worker

- ✓ Race
- ✓ Occupation
- ✓ Years in Oilfield
- ✓ English as a Second Language
- ✓ Task

First FOG NIOSH Numbered Publication

2014 Mid-Year Fatality Report

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

NOSH

On the Horizon

Special topic reports

- Fires/Explosions associated with tanks
- H₂S exposure
- Dropped tubulars

Time frame reports

- Full year reports
- Multi-year reports (5 year report)

Queriable FOG system

Oil and Gas Extraction Worker Survey

Worker Exposure Assessment

Based on worksite operations and chemicals in the industry, workers have potential risks for exposures to multiple chemical hazards

Field Studies- identify and characterize workplace exposures and evaluate their significance.

- Become familiar with process operations
- Perform the preliminary, qualitative survey
- Perform workplace monitoring (quantitative evaluation)
- Interpret the sampling results and communicate with stakeholders
- Develop controls if needed
- Re-evaluate to determine effectiveness of controls

NIOSH FIELD STUDY STRATEGIES

- Focus on process or activity
 - Drilling, Completions, Production, Service
- Focus on exposure hazard
 - Chemical: Silica, Hydrocarbons, Diesel Exhaust etc
 - Physical: Noise, Heat/Cold, NORM
- Focus on emerging issue identified by surveillance
- Focus on worker exposures by production area
- Development and evaluations of controls

NIOSH Field Laboratory

2015 Bravo Star Trailer

- 7 x 12 interior space
- Weatherized
- Heating/AC
- Can operate with generator power or supplied shoreline power

Finally, after 2 years!

Methods Used

- Standard Industrial Hygiene Methods
 - NMAM and OSHA Numbered Methods
 - Personal and Area Samples
- Direct Reading Methods
 - Real Time Instruments, Meters and Monitors
 - Video Exposure Monitoring
- Biological Monitoring
 - Measure Internal Exposures/Effects by Breath, Urine

Focus on Process-Completions

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Primary Health Hazard- Exposure to Respirable Silica during Hydraulic Fracturing

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Exposure comparisons by job title

Point Sources of Respirable Crystalline Silica Release

3.

- Dusts ejected from thief hatches on top of the sand movers during refilling operations
- Dust ejected and pulsed through side fill ports on the sand movers during refilling operations
- Dust generated by on-site truck vehicle traffic including sand trucks and crew trucks, the release of air brakes on sand trucks, and by winds
- 4) Dust released from the transfer belt under the sand movers
- Dusts created as sand drops into, or is agitated in the blender hopper and on transfer belts
- 6) Dust released from operations of transfer belts between the sand mover and the blender
- 7) Dust released from the top of the dragon's tail on sand movers
- Bust deposited on and released from workers coveralls

CDC

Workplac

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Respirable Silica Exposure Zones

Avoid area during sand transfers and pumping

Impact of NIOSH RCS Study

WARNING Crystalline Silica Work Area Breathing Crystalline Silica dust can cause serious or fatal respiratory diseases; including silicosis. Respirator Required

- First study to identify RCS hazard during hydraulic fracturing
- OSHA-NIOSH Hazard Alert
- Industry formed RCS Workgroup
- JOEH article most downloaded of 2013
- Wide array of new, improved controls implemented

Focus on Hazard- Diesel Particulate

Image courtesy of Jeff Swensen for the New York Times.

What is Diesel Particulate Matter?

The adsorbed compounds comprise 15% to 65% of the total particulate mass and includes compounds such as polycyclic aromatic hydrocarbons, many of which are possibly carcinogenic

Diesel particulate matter is highly respirable (typically less than 2.5 micrometers) and can reach the gas exchange regions of the lungs

NI

Health Effects from DPM exposure

- Depends on how long one is exposed and magnitude of exposure
- Eye and nose irritation
- Throat irritation with cough
- Exacerbation of pre-existing respiratory conditions: bronchitis, asthma, etc.
- Headaches
- Dizziness
- Cardiovascular disease
- Cancer
 - International Agency for the Research of Cancer considers DPM to be a human carcinogen (Group 1)
 - NIOSH considers DPM to be a potential occupational carcinogen
 - Although excess cancer risks for workers exposed to diesel exhaust has not yet been quantified, the probability of developing cancer should be reduced by minimizing exposure

Where can Diesel Particulate Matter (DPM) Be Found on Oil and Gas Sites?

- Diesel powered engines can be found all over sites
 - Diesel powered earth-moving equipment
 - Drilling rigs
 - Wireline crews
 - Blender trucks and pumps
 - Diesel Sand movers and transport (T) belts
 - Water transport systems
 - Fuel Delivery Trucks
 - Diesel-driven generators
 - Specialty crew: equipment for rig moving, coiled tubing, etc.

NIOSH Study

- Combination of data from preliminary oil and gas hazard assessments and Field Effort to Access Chemical Exposures in Oil and Gas Extraction Workers (2008-2012)
- 103 full shift air samples
 - 48 Personal Breathing Zone
 - 55 Area
 - Analysis by NMAM 5040
 - DPM as elemental carbon by Thermal Optical Analysis
- States
 - Colorado
 - North Dakota
 - New Mexico
 - Texas
- Site types
 - Completions Hydraulic Fracturing (56/103 or 54%)
 - Drilling (31/103 or 30%)
 - Servicing (16/103 16%)

Summary Results

- 23 Samples were below the limit of detection
- For 80 samples with reported values:
 - Mean= 16.1 Standard Deviation= 14.2 Range= 2-68 μ g/m³

By Activity

- Completions Hydraulic Fracturing
 - Mean= 13.6 Standard Deviation= 13.4 Range= 3-52 μg/m³
- Drilling
 - Mean= 7.4 Standard Deviation= 5.3 Range= 2-18 μg/m³
- Servicing-Other
 - Mean= 7.5 Standard Deviation= 3.4 Range= 2-14 μg/m³

Summary Continued

- 21 of 103 (20%) samples exceeded the California Department of Health Services OEL of 20μg/m³ (TWA for EC)
- 4 PBZ samples of 48 (8%) total PBZ samples
 - Water Transfer Operator
 - Chemical Operator
 - T-belt operator
- 41μg/m³ 28 μg/m³
- Sandmaster Operator
- 20 μg/m³

52 μg/m³

• 17 area samples of 55 total area (31%) samples

Examples

•

Blender trucks and cabs	21-68 µg/m³
Mud tanks and pumps	22-40 μg/m³
Rig Floor	47 μg/m³
Driller station on rig	38 µg/m³
Containment pit pump	29 µg/m³
Control stations for Sand movers	27-28 μg/m³

Focus on An Emerging Hazard – Tank Gauging

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Using FOG to Identify Fatalities

- In 2013, NIOSH contacted by Dr. Bob Harrison regarding 2 deaths where inhalation of petroleum hydrocarbon gases and vapors suspected.
- NIOSH/OSHA reviewed fatalities (2010-2014) in FOG and monitored deaths closely.
- Published 1st Science Blog in May 2014 (following 2 more deaths).

CDC

Worker over Open Hatch

Fatality Case Definition

- Non-traumatic
- Worker in proximity to a known and concentrated source of hydrocarbon gases and vapors. (open hatch)
- Hydrogen Sulfide (H₂S) was ruled out.
- Not confined space.
- Not fires/explosions.
- Case by Case Review conducted by OSHA/NIOSH.

Fatalities Associated with Manual Gauging, Thieving, Fluid Handling

Nine (9) worker deaths where inhalation of petroleum hydrocarbons was likely factor.

- All occurred at production tanks.
- 5 fatalities occurred during thieving (collecting a sample) by fluid haulers.
- One employee was wearing 4gas monitor, reported 6.5% O2..
- One had sought medical evaluation for dizziness, etc. a few weeks prior.

NIOSH FOG Report and Science Blog Update

Suspected Inhalation Fatalities Involving Workers during Manual Tank Gauging, Sampling, and Fluid Transfer Operations

www.cdc.gov/niosh/topics/fog/publications.html

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Direct Reading Instruments Qualitative Characterization of Tank Release

Evaluating Rapid Releases of Hydrocarbon

- Exposure assessments designed to measure gas and vapors released in plumes and during very short worker tasks
 - Non-traditional IH assessment methods
 - Grab Samples
 - PEAK, STEL, IDLH assessments
 - Real-time GC as well as GC/MS analysis

Grab Samples 0.5 meters above hatch

Analyte	Concentration Range	IDLH (ppm)	Severity
Methane	0-88,000 ppm	5000	0-17
Ethane	200-188,000 ppm	3000	0.1-63
Propane	64-240,000 ppm	2100	0-114
Isobutane	35-21,664 ppm	1800	0-12
n-Butane	100-110,000 ppm	1860	0-60
Isopentane	0-14,000	1400	0-10
n-Pentane	0-100,000	1500	0-67
C1-C5 (Total)	800-640,000	-	-

Grab Samples 0.5 meters above hatch

Analyte	Concentration Range	IDLH (ppm)	Severity
Benzene	nd-230 ppm	500	0-0.5
Ethylbenzene	nd-26 ppm	800	0-0.03
Toluene	nd-74 ppm	500	0-0.15
Xylenes	nd-190 ppm	900	0-0.2

Behavior of Production Fluid Storage Vessels without

0

0 0

Tank is continuously vented to the atmosphere. Gases and vapors in tank are in equilibrium with outside air. No significant pressure on the tank.

Behavior of Production Fluid Storage Vessels with NSPS 0000 Controls (post- 2012)

Hatch is closed. No visible emissions, greater than 95% VOCs produced are controlled. Gases and vapors in tank are in equilibrium with gas and vapors in the liquid hydrocarbon. The different gases and vapors are exerting pressure on the container.

Hatch is opened. A large volume of gases (mostly propane and butane) rush out of the hatch very quickly. The "cloud" can displace oxygen in the immediate work area and presents an immediate asphyxiation hazard.

Department of Health and Human Services Centers for Disease Control and Preservation National Institute for Occupational Salety and

As hatch remains open, heavier hydrocarbons in the tank (pentane, hexane, heptane, BTEX) will evaporate and leave the tank and enter the workspace. Rate of flow is still high and these gases and vapors may be present at toxic and flammable concentrations.

Department of Health and Human Services Centers for Disease Control and Pretty fuon National Institute for Occupational Salety and

Hatch remains open. Gases and vapors in tank are approaching equilibrium with the environment and the rate of emission slows down significantly. Heavy gas and vapors drop toward the ground.

Determinants of Released Gas and Vapors

- Production rate of the well
- Composition of fluid and inherent vapor pressure higher vapor pressure more gas and vapors in headspace
- Pressure setting on emission controls- gas and vapor equilibrium changes with pressure,
- Number of tanks in the battery-more tanks greater volume of release
- Proper operation of vapor controls

OSHA/NIOSH/NSTEPS Alliance Hazard Alert

http://www.nationalstepsnetwork.org/docs tank gauging/TankHazardInfographicFinal04 22 15.pdf

NOSI

Focus on Worker Exposures by Production Area

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

What Operations Did We Study?

- Flow Back Operation- Oil wells, Wet and Dry Gas Wells
- Lease Operators
 - Legacy wells
 - Newer Wells
- Drill Out
- Production Operators
- Pigging Operations

What Areas or Basins

- Fayetteville Shale- Dry Gas
- Marcellus- Wet and Dry Gas
- Utica Shale-Wet Gas
- DJ- Oil and Gas
- Piceance-Oil and Gas
- San Juan-Oil and Gas
- Jonah-Oil and Gas
- Bakken-Oil

Comparison of PBZ Gas and Vapor Profile by Basin

Previous Graphs on the Same Scale

Variation in composition and concentration in PBZ samples collected in the Niobrara (CO) Basin Different Wells.

Variation composition and concentration in PBZ samples collected on a flowback worker over 4 days at the same well in the Marcellus (PA) basin.

NO

Development and Evaluation of Controls

Esswein, NIOSH of Eric Photo courtesy

NIOSH Mini-Baghouse Retrofit

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

- Proof of concept, June 2012, 2nd and 3rd generation versions
- Patent pending
- Fills immediate need: engineering control for silica dust
- A "bolt on control"
- No need to remove the sand mover from the field

NG

Effectiveness of Mini Baghouse Retrofit Assembly

Department of Health and Human Services Centers for Disease Control and Prevention National Institute for Occupational Safety and Health

Reductions in respirable crystalline silica concentrations ranged from 79% to 99% when using the mini-baghouse

The 3rd-generation Mini-Baghouse design has improved features:

- Increased surface area of filter cloth
- Dust-release coating on the inside of the bag
- More resistant to leaks

Photos courtesy of Dylan Neu, NIOSH

Tests with the redesigned minibaghouse are currently underway

- Eric Esswein funded by CDC I-Fund Program for expanded field evaluation
- New partners are stepping up to perform real-world evaluations
- Opportunity to evaluate multiple control strategies simultaneously

Future Directions for NIOSH Exposure Assessment Research in the Oil and Gas Extraction Industry

- Acute Exposure Hazards (VOC exposures, flammability hazards) During Handling of Crude, Produced Water, etc.
- Flowback (VOCs, aldehydes, alcohols, BTEX)
- Long term eval: NIOSH Mini Baghouse Retrofit Assembly Long term goal: licensing, adoption
- Drilling (VOCs, diesel particulate [DPM], silica)
- Servicing Operations (NORM, VOCs, DPM)

Questions?

Alice Hamilton, M.D. Mother of U.S. Occupational Medicine 1869–1970

Email: jts5@cdc.gov

Disclaimer: The findings and conclusions in this presentation are those of the author(s) and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

