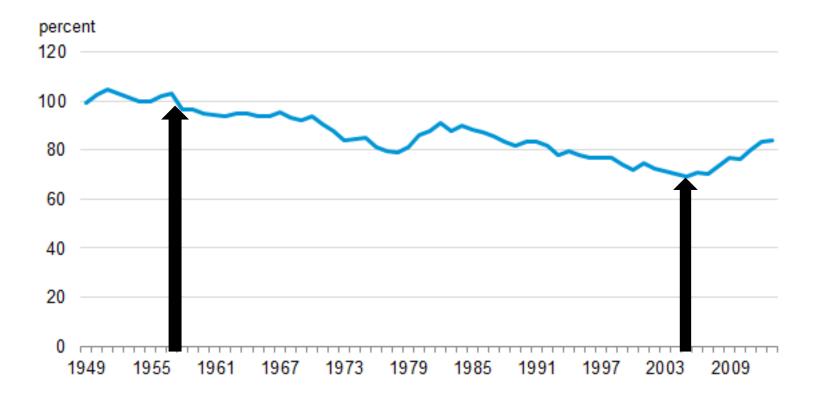
FRACKING 101 What You Need To Know

Nina M. Kaktins, MS, RN Adjunct Nursing Professor, Chatham University

The Search for Energy

Energy needs in the U.S.

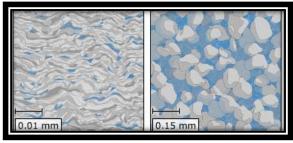

- Consumption continues to outpace production
- Reliance on unstable foreign sources (primarily affects **OIL** supplies)

• **Sources of energy** (% of total consumption in 2014)

- Petroleum (35%)
- Natural Gas (28%)
- Coal (18%)
- Renewables (10%)
- Nuclear Electric Power (8%)

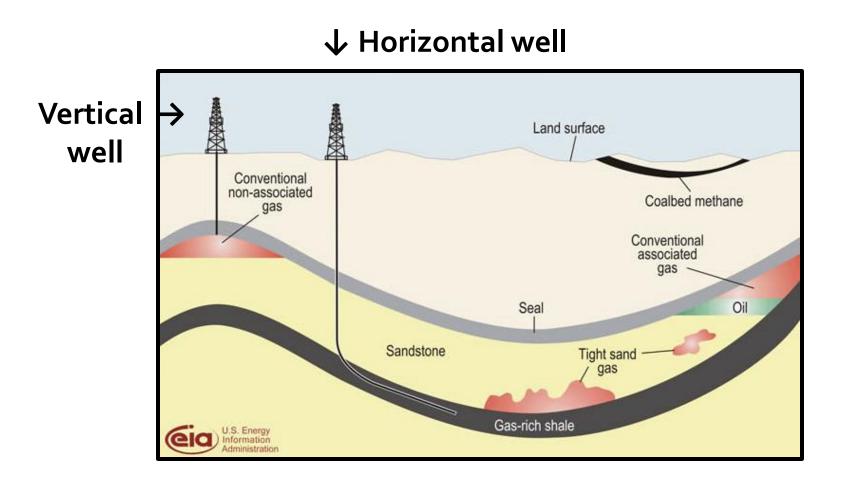
http://www.eia.gov/energy_in_brief/article/major_energy_sources_and_users.cfm

Ratio of domestic energy production to consumption (1949 - 2013)

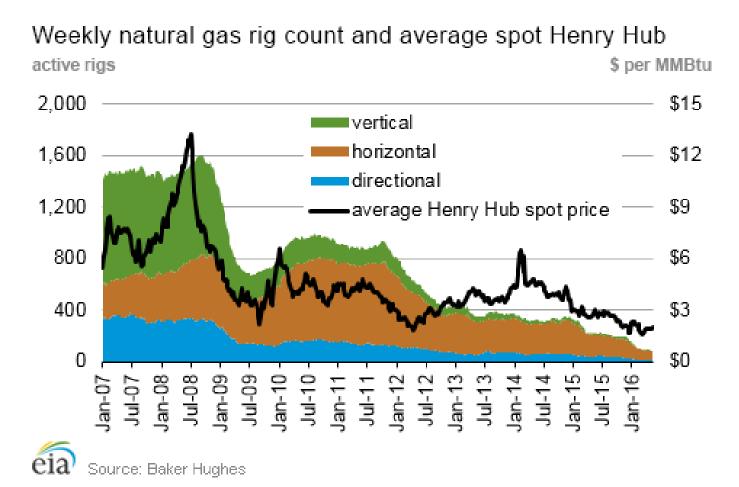

Unconventional Resources Oil & Natural Gas

Rock formations with low permeability

- Shale
- Tight "sands"
- Coalbed methane


Resource development

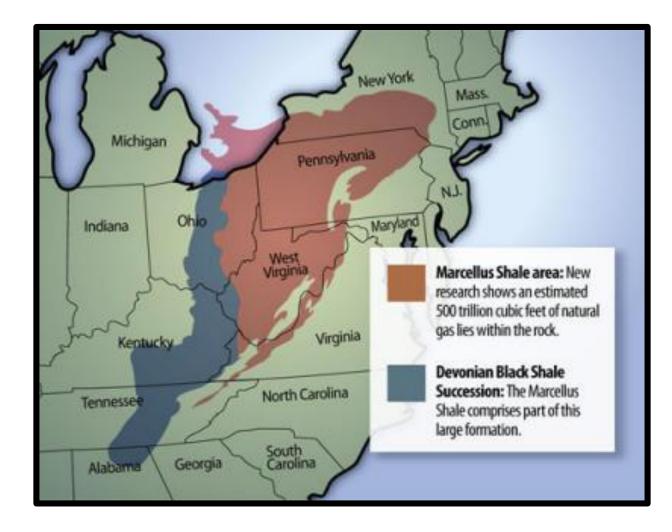
- ↑ price of natural gas
- Technological advances
 - Horizontal drilling
 - High volume hydraulic fracturing, aka "fracking"



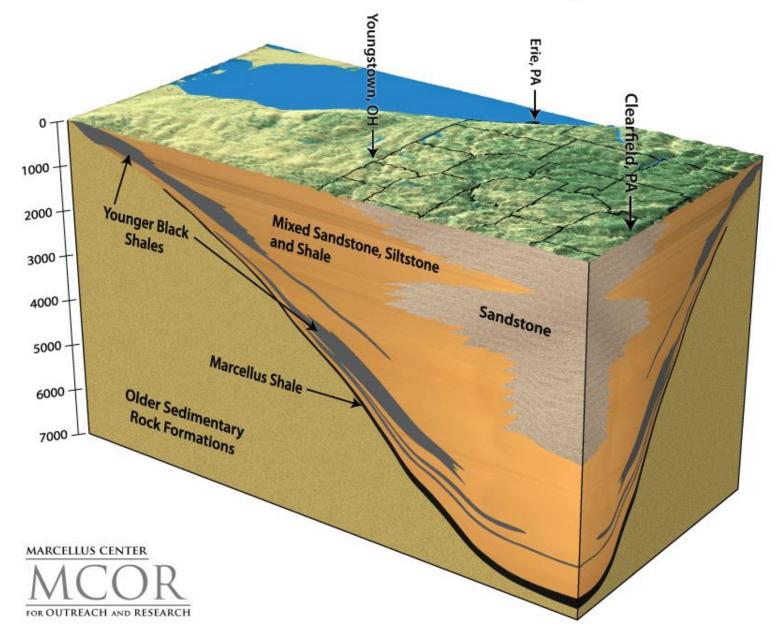
shale sandstone

Unconventional versus Conventional Natural Gas Resources

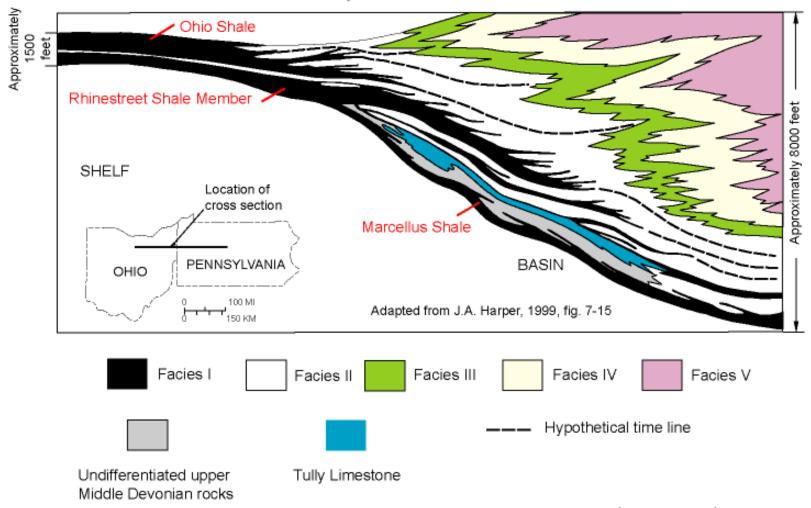
Price of Natural Gas Drives Drilling


The Marcellus Shale

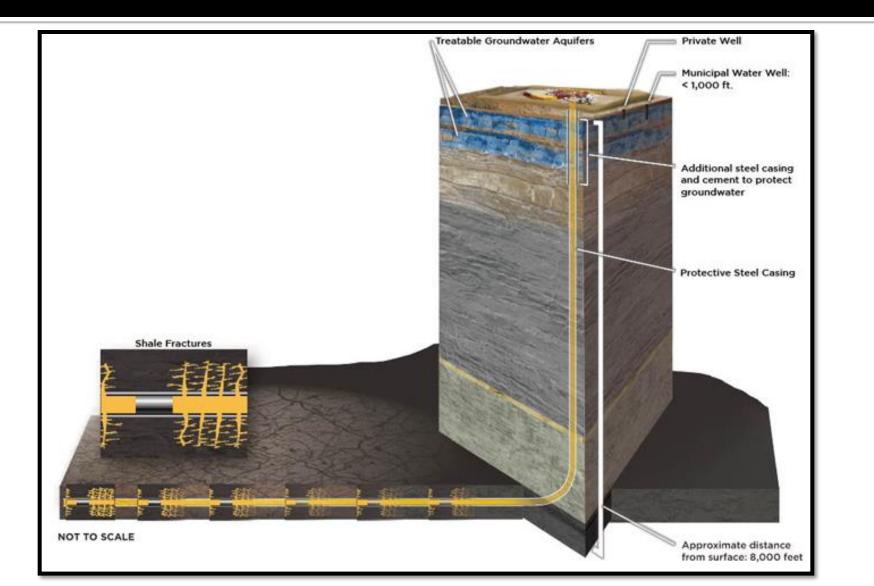
- Named after Marcellus, NY
- ~384 million years old

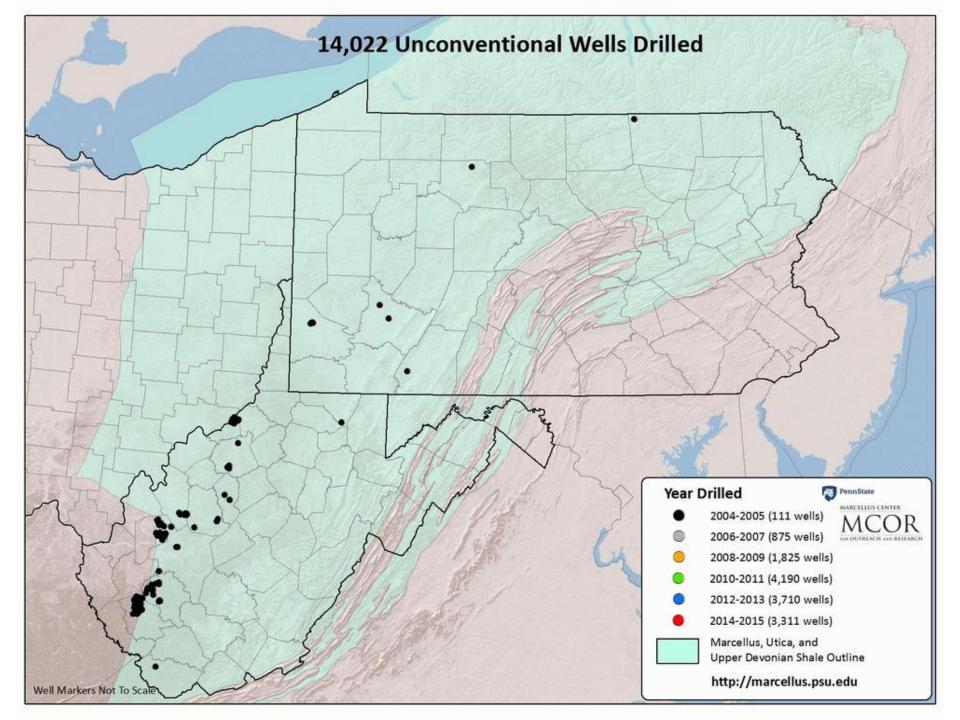


- ~2000 to 9000+ ft below surface
- Formed from organic-rich mud
 - Shallow sea environment
 - Natural gas and brine trapped in rock pores
 - Highly radioactive


Marcellus Shale Area

Generalized Geologic Cross Section Showing Marcellus Shale in Western Pennsylvania




Cross Section of Marcellus Shale

Robert C. Milici, USGS, 2005

High-Volume Hydraulic Fracturing

PA Fracking Operation

Overview of Fracking Process

High-pressure injection of special fluids

- Occurs in ~4 to 20 intervals along horizontal section
- ~3 to 5 million gallons of water used per well

Composition of fracking fluid

- Water (90 95%), sand as proppant (7 9.5%)
- Chemicals, hazardous and nonhazardous (.5 3%)

Wastewater" and solid waste produced

- ~10 to 70% fracking fluid flows back to surface
- Includes brine, contaminants from Marcellus shale

Typical Fracking Operation

- Five-acre well pad
- Road construction
- 24/7 work schedule
- 3-4 months to complete
- Open, lined pit for wastewater
- Extensive diesel truck traffic, ~1000 trips/well
- Cost of drilling ranges from \$5-7 million

Chemicals Used in Fracking Fluids

- >300 chemicals identified by NYSDEC
- Proprietary chemical compounds, mixtures
- 80 to 350 tons of chemicals per well
- Types of chemicals, examples
 - Acids: dilute hydrochloric acid
 - Biocides: bromine-based, glutaraldehyde
 - Scale inhibitors: ethylene glycol
 - Friction reducers: polyacrylamide

Fracking Chemicals	Health Effects (dose-related)
2,2-Dibromo-3- Nitrilopropionamide	Corrosive to eyes; throat/lung irritation; pulmonary edema
Ethyl benzene	Kidney and reproductive problems
Ethylene Glycol (antifreeze component)	Kidney function; acid/base balance; nervous system, lungs, cardiac
Glutaraldehyde	Asthma; throat/lung irritation, wheezing; conjunctivitis
Naphthalene	Damage to liver, kidneys, eyes; anemia
Xylene	CNS, eyes, skin, respiratory system, GI tract, blood, liver, kidneys
Toluene	Cardiovascular, neurological

Environmental Health Issues

- Water contamination
- Air pollution
- Waste disposal (solid & liquid)
- Traffic
- Noise, lights
- Economic, social conditions
- Healthcare infrastructure
- Drilling accidents, violations

Groundwater Pollution Issues

Methane migration

- Faulty casing, excessive well pressures
- Cement fails over time
- Simple asphyxiant
- Forms explosive mixture with air at <5%</p>
- Leaky wastewater pits
- Accidental spills, blowouts, violations

Onsite Wastewater Pits

Surface Water Pollution Issues

Treated wastewater discharged to streams

- Treatment inadequate
- TDS, radioactive elements
- Bromide reacts with chlorine to produce THM
 - THM linked to cancer, birth defects
- Accidental spills, blowouts
- Illegal dumping (affects surface and groundwater)

Local & Regional Air Pollution

- Formation of ground-level ozone
 - Production of ozone precursors at drilling sites
 - **Diesel** exhaust
 - Methane emissions
 - Flaring of gas wells, venting of condensate tanks
 - NO_x & VOCs react with sunlight, form ozone
 - With new EPA regulation, 33 PA counties will be in nonattainment for ground-level ozone
- PM_{2.5}
 SO₂

Drilling Waste in PA, 3,922 Wells Jan-Jun 2012

Waste Type	Barrels (42 gal/bbl)	Tons
Basic sediment	3,746	
Drill cuttings		618,272
Drilling fluid	1,162,880	
Flowback fluid	3,818,866	
Flowback fracturing sand		13,429
Produced fluid	7,153,833	
Servicing fluid	6,233	
Spent lubricant	2,521	
Totals	12,148,081 (510,219,402 gal)	631,707

Traffic Issues

~1000 truck trips per well
 Damage to infrastructure
 ↑ accidents, spills, traffic violations

Noise Issues

- 24/7 truck traffic during well development
- Low-frequency noise from completed wells
 - Annoyance, stress, irritation, unease
 - Fatigue
 - Headache, adverse visual functions
 - Disturbed sleep

Economic Issues

BOOM

- Decreased unemployment, skill dependant
- Increased revenue for some businesses, landowners
- Increased homelessness, competition for housing
- Increased needs for healthcare

BUST

- Economic uncertainty
- Decrease in population
- Ecological, human health costs to communities

Social Issues

- Divided communities
- Vulnerability to mental health problems

 - Anxiety
 - Depression
- Potential ↑ STDs

Healthcare Infrastructure Issues

- The second seco
- ↑ Psychological, psychiatric healthcare needs
- Unknown public & occupational health problems
 - Lack of transparency in drilling chemicals used
 - Lack of research
- Act 13 became law on February 14, 2012
 - Protects proprietary information on chemical compounds
 - Healthcare workers must sign confidentiality statements

Drilling Violations January 2011 - August 2014

Company	Environmental and Health Violations	Rank
CABOT OIL & GAS CORP	265	1
CHESAPEAKE APPALACHIA LLC	253	2
RANGE RESOURCES APPALACHIA LLC	174	3
CHIEF OIL & GAS LLC	150	4
SWEPI LP	119	5
XTO ENERGY INC	113	6
ANADARKO E&P ONSHORE LLC	92	7
SOUTHWESTERN ENERGY PROD CO	88	8
WPX ENERGY APPALACHIA LLC	86	9
SENECA RESOURCES CORP	85	10 (tie)
CARRIZO (MARCELLUS) LLC	85	10 (tie)
EXCO RESOURCES PA LLC	82	12
EQT PRODUCTION CO	80	13 (tie)
PA GEN ENERGY CO LLC	80	13 (tie)
TALISMAN ENERGY USA INC	65	15
CHEVRON APPALACHIA LLC	63	16
ULTRA RESOURCES INC	52	17
EOG RESOURCES INC	38	18
CNX GAS CO LLC	36	19
SNYDER BROS INC	31	20

Role of Healthcare Professionals in Drilling Areas

ANA and PSR position on fracking

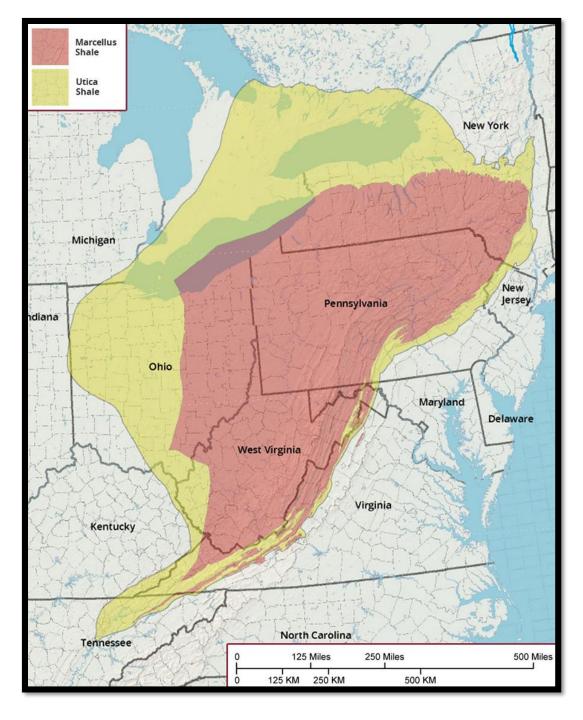
- Precautionary principle
- Moratorium until safety can be ensured
- Environmental health competencies

 - Health promotion through patient teaching

Environmental health assessments

Fracking Near Beaver Run Reservoir

http://wri.eas.cornell.edu/gas_wells_waste.html



www.marcellus-shale.us

Drilling in the

Utica Shale

...is just beginning

Selected References

Cusack, M. (2015). Project would bring 400,000 pounds of drilling waste to PA's Grand Canyon. Retrieved from State Impact website: https://stateimpact.npr.org/pennsylvania/2015/07/13/project-would-bring-400000-tons-of-drilling-waste-to-pa-s-grand-canyon/ DiGiulio, D. C., Wilkin, R. T., & Miller, C. (2011). Investigation of ground water contamination near Pavillion, Wyoming. Retrieved from the EPA Pavillion website: http://www.epa.gov/region8/superfund/wy/pavillion/EPA_ReportOnPavillion_Dec-8-2011.pdf Dusseault, M. B., Gray, M. N., & Nawrocki, P. A. (2000, November). Why oilwells leak: behavior and long-term consequences. Paper presented at the Society of Petroleum Engineers International Oil and Gas Conference and Exhibition, Beijing, China. Harper, J. A. (2008). The Marcellus shale: An old new gas reservoir in Pennsylvania. Pennsylvania Geology, 38, 2-13. Inglis, J., & Rumpler, J. (2015). Fracking failures: Oil and gas industry environmental violations in Pennsylvania and what they mean for the U.S. Retrieved from http://environmentamerica.org/sites/environment/files/reports/EA_PA_fracking_scrn.pdf Kargbo, D. M., Wilhelm, R., & Campbell, D. J. (2010). Natural gas plays in the Marcellus shale: Challenges and potential opportunities. Environmental Science & Technology, 44, 5679-5684. doi: 10.1021/es903811p National Association of Manufacturers. (2015). What could new ozone levels cost Pennsylvania? Retrieved from http://www.nam.org/Issues/Energy-and-Environment/Ozone/State-Data/Pennsylvania-Ozone-Data-2015.pdf New York City Department of Environmental Protection. (2009). Final impact assessment report, impact assessment of natural gas production in the New York City water supply watershed. Retrieved from NYCDEP website: http://www.nyc.gov/html/dep/pdf/natural_gas_drilling/12_23_2009_final_assessment_report.pdf Pennsylvania Department of Environmental Protection. (2012). DEP Issues Revised General Permit for Gas Wastewater Processing Facilities. Retrieved from http://www.portal.state.pa.us/portal/server.pt/community/newsroom/14287?id=19319&typeid=1 Pennsylvania Department of Environmental Protection. (2012). Oil and gas compliance report. Retrieved from the PA DEP Oil and Gas website: http://www.portal.state.pa.us/portal/server.pt/community/oil_and_gas_compliance_report/20299 Staff, E. (2012). Risky business: An analysis of Marcellus shale gas drilling violations in Pennsylvania, 2008-2011. Retrieved from http://pennenvironmentcenter.org/sites/environment/files/reports/Risky%20Business%20Violations%20Report_0.pdf U.S. Department of Energy. (2009). Modern shale gas development in the United States: A primer. Retrieved from http://www.netl.doe.gov/technologies/oil-gas/publications/ EPreports/Shale_Gas_Primer_2009.pdf Witter, R. (2010). Use of health impact assessment to help inform decision making regarding natural gas drilling permits in Colorado. Retrieved from Garfield County Colorado website:

http://www.garfield-county.com/public-health/documents/BOCC_Draft_HIA_Presentation_10_4_10[1].pdf